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ABSTRACT: We define inflation to he a cosmic scenario chara,cterized by 

a period of superluminal expansion and massive entropy production. We 

show. subject to minimal assumptions. that the resolution of the horizon 

and flatness problems associated with the standard cosmology necessuily 

involves both features. This rules otlt a class of adiabatic solutions in which 

the Plank mass varies by many orders of magnitude. and points to inflatiolt 

as the unique dynamical solution to horizon and flatness problems. 
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As successful as the standard cosmology is. it has a number of well known 

shortcomings: t,he horizon and flatness problems [l, 2] and, in the context, 

of grand unified theories (CUTS), the monopole problem [3]. \l’hile these 

shortcomings do not involve logical inconsistencies, they indicate that in the 

standard cosmology the present state of the Universe depends strongly upon 

the initial state-a feature that many consider undesirable. (It is possible of 

course. that these cosmological conundrums do not need a dynamical espla- 

nation; e.g.. Penrose has suggested that there ma!’ he a law of physics that 

governs the initial state of the Universe [J].) 

Guth’s inflationary Universe scenario provides an elegant solution to these 

problems involving the microphysics of the very early, Cni~erse (l 5 10-s” set 

and T 2 1Or4 GeV) [‘I. While many implementations of Guth’s original idea 

now exist. all involve two key elements: a period of superluminal expansion 

(driven by false-vacuum energy) and massive entropy production (conversion 

of the false-vacuum energy to radiation) [5]. \4;e shall take the presence of 

these two elements as our definition of inflation. In this Lttirr \ve show. 

subject to minimal assumptions. that both elements are required for the 

solution of the horizon and flatness problems. This rules out the possihilit? 

of adiabatic solutions based on a time-varying Pla~nck mass [S. 7. a]. and 

indicates that inflation is t,he unique dynamical solution to these problems. 

Let us begin with the horizon problem. One of the many ~vays of stat- 

ing the horizon problem is that the comoving Hubble radius at ea,rly times. 

H-‘/R. was much, much sma.ller than the present comoving Huhble radius. 

HC’JR,; here R(t) is the cosmic-scale factor and H E h/R is the expa~nsion 

rate. This precludes causal physics operatin, D at early times from esplain- 

ing the smoothness of our current Hubble vd;ume [Y]. To solve the horizon 



problem one must arrange to have 

(R,H,)-l 2 (&&I-‘: (11 

where subscript 1 refers to some early epoch 1r and subscript 0 refers t,o the 

present epoch [lo]. Since HR = I?. this implies that R must increase from 

time tl until the present: this can only occur if R is greater than zero at some 

time between tt and t,,, which is t,he definition of superluminal expansion. 

The flatness problem and its resolution are intimately related to the hori- 

zon problem. The flatness problem involves the observation that R. the ratio 

of the energ! density of the I’niverse to the critical densit!,. is close to unity 

today in spite of the fact that IQ - 11 grows as a power of the scale factor. 

Since the curvature radius is proportional to 19 - 1 I-“‘. 

R,,,, = R(t)Jkl-I” = 
H-’ 

(R - 11’12’ 12) 

this implies that the Cniverse becomes relatively .‘less Rat” with time. pro- 

vided k # 0. (In alternati1.e theories of gravity. we take the :3-curvature to 

be 6!~/R(t)~ and use Eq. (2) as the definition of R.) Suppose the horizon 

problem is solved. i.e.. (R,N,)-’ = 3(RoHo)-’ where 8 2 1: it follows t,hat 

pLl0 - I/ = In, - 11,a2. (3) 

That is. the deviation of R from unity is reduced by the square of the factor 

by which the horizon problem is solved. insuring that R is close to unit> 

today and that the Universe is relatively flat. 

i!e no\< return to Eq. (I j: since at present the I:niwrse is matter domi- 

nated with pmdller - 1O’Ti. we have Ho - 10*7~/mp,. At some earlier time 

t, when the Universe was radiation dominated. N, - T(/nlpt: if radiation 



was not the dominant contribution to N1. then If, was greater that! this. In 

any case. the horizon/flatness-problem-solving condition Eq. (1 ‘j implies 

where 5 3: (RT)3 is the entropy per comoving volume. (We will treat g-. 

the number of effectively massless degrees of freedom. as a constant. C’ioser 

analysis shows that the variation of 9. does not affect our conclusions unless 

the initial value of 9. was at least 10’s’.) Equation (4) makes clear that the 

horizon and flatness problems can be solved hy large-scale entropy produc- 

t,ion; specifically, Sa/SI 2 ( 10-2~,/~0)“. Th’ IS is the strategy underlying the 

inflationary solution. in which a period of superluminal (usually exponential) 

growth of the scale factor is followed by a reheating period characterized by 

large entropy production 

We now proceed to show thn~t entropy production is in fact necessary. 

In the standard cosmology. where mp~ is constant. this is easy to see. If the 

expansion were adiabatic. then S, = T0 a,nd Eq. (4) would require & < I02T0. 

and thus. by a,diaba,ticity. R, > IO-‘Ro. Since the early superiuminal epoch 

tl was certainly well before the time of recombination (R,,, - iOm3Ro). this 

means that R must have decreased at some point. However. this cannot be. 

since any Friedmann-Robertson-Walker model that is now expanding must 

always have been expanding, provided only that we make the reasonable 

assumption that the energy density has always been positive. 

It might seem that a variable Pianck mass could drastically alter this: A 

larger Plank mass at early times would imply a weaker effective gravitational 

constant. This would slow the expansion. leading to an older Universe and 

a larger horizon 16. 7. S]. Specifically. the horizon-problem-solving condition 



would be satisfied without entropy production if it could be arranged that 

mPl(ll) 2 i~o-*T~lTo)mP,,o h 1030T,; (5) 

where mpt,n denotes the current value of the Planck mass. mpt.e z npl(tc) = 

CT;“’ = 1.22 x 10” Gel:, and mpt(t) = G,-,I(~)- I/’ denotes its value as a func- 

tion of time. (Equation (.!I) can also be derived from entropy considerations. 

The current Hubble volume contains an entropy So - Hc3Ti - IO”” while 

the entropy within the horizon at early times is S, - He3T3 - [~npl(t)/T]~ - 

105’[mp~(l)/m~~.o]3(Ge\‘/T)3. To ensure that S,, > 5’“. we must require that 

mPl(tl) z 10’OIT,/GeV)l)lPl.O.) 

We now show that it is not possible to decrease the Pla.nck mass rapidly 

enough and thus that an adiabatic solution to the horizon/flatness problems 

is not possible. Our strategy is to focus on the quantity T/mp,. To reproduce 

the successful predictions of primordial nucleosynthesis, the Plan& mass 

must have reached its present value by a tempetature of order 10 MeC’. 

From this and Eq. (5) it follows that at some eat,ly, time t, the value of 

T/nip, must have been smaller than its value at nucleosynt,hesis by a factor 

of 10s in order to solve the horizon/flatness problems. K,‘e now demonstrate 

that such an increase in T/nlpt from r I to lnnF: is incotnpatible with the 

assumption of adiabatic expansion. 

In describing a generic theory with a variable Planck mass we shall rep- 

resent the Plan& mass squared by a Brans-Dike type field @ = mph’. We 

write the action in the form 

-‘(a). Gd,Od”@ - I,‘iOi + Cnlalter I (Sj 

The unusual form of the @ kinetic energy term is not essential: it can be put 

in the standard form by transforming to a field cj@) obe!,ing (de,/&)? = 



,,/(8rr@). For constant a and vanishing V(a) this reduces to the Brans- 

Dicke theory. We will assume that both the matter energy density p and 

l/(Q) are non-negative (a negative potential would lead to a negative cosmo- 

logical constant). It is also reasonable to require that ~(a’) be positive to 

avoid the instabilities (and quantum mechanical inconsistencies) associated 

with negative kinetic and gradient energy terms; actually, only the weaker 

condition Y 2 -3/2 is needed for our purposes here, and this is what we 

shall assume. We do not consider the possibility of terms of second or higher 

order in the curvature: for the case of second-order terms. the theor!, can be 

reformulated as Einstein gravity with a,n additiona, field [I I] and an analysis 

similar to ours can be applied. 

This action leads to a Friedmann equation of the form 

*2 = WP + 1’) 3* -H(;)+;($-$ (7) 

It is convenient to rewrite this as 

2 
( -) 

8r(p + I,‘) ..g = 3@ +;(-‘f;) (i)‘-6. (6) 

The quantity appearing on the lefthand side of this equation is 

H + iz = -$In(Rnrpr) = -$ln(T/mpt): 

\vhere the second equality follows from the assumption ofadiahaticit?;. Hence, 

during epochs where the righthand side of Eq. (8) is nonzero. the quantity 

T/mpr must evolve monotonically. For I; <: 0. the righthand side can never be 

negative. and so the variation of T/ r,~pr is always monotonic. Since 7’/1npr has 

certainly heen decreasing since the time of nucleosynthesis, it must always 

have been doing so: we thus have our result for an operr or’ flat I:niverse. 

.; 



The proof for a closed Universe requires a bit more work. [Vith A. > 0. 

the righthand side of Ey. (6) has no definite sign. and so the Universe might 

have alternated betweet eras of increasing and decreasing T/mpt. Consider 

the possibility that the current era of decreasing T/rap) did not extend back 

to the beginning, but rather began at some time t’. after the early era of 

rapid Plan& mass variation and before nucleosynthesis. From the vanishing 

of the righthand side of Eq (6) at t = t’, we obtain 

k > E A’rad(t-) 

R?(P) - 3 mp,*(t’)‘ 
(10) 

These quantities can be related to the corresponding quantities at the time 

of nucleosynthesis. By- adiabaticity P&(t’) = Prad(tgaN)R~(tBB~)/R4(t.). 

while the assumption that T/m pt has been decreasing since 1 = 1’ implies 

p,,d(t’)/mp~‘(t’) > Prad(lBBN)/mp,~(lgg~). since pYa,J x T”. Substituting into 

Eq. (IO), \ve obtain 
I; > E Pmd(fBBN) 

R2(te~ti) - 3 ,np,?(tanli) (11) 

This last inequality is false. since at the time of nucleosgnthesis the curvature 

term in the Friedmann equation was in fact much smaller than the radiation 

energy density. Hence. the assumption of the existence of a time L- must be 

abandoned. and we have proven our result 

Our proof for a closed Universe illustrates how difficult it is to have 

d(T/mpl)/dt change sign. Even if one were to relax the assumptions rz 2 

-3/Z and the positivity of other contributions to the energy density. the 

righthand side of E,q. (8) must vanish and the negative contribution must 

thereafter decrease more rapidly than R-’ to guarantee a radiation-dominated 

Universe at nucleosynthesis. To see how challenging this is. it is instructive to 

use a conformal transformation to rewrite our action with a constar~t Planck 



mass, but time-varying particle masses. In the conformal frame. changing 

the sign of d(T/mpl)/dt is equivalent to constructing a cosmological model 

which bounces, i.e., in which R changes sign. 

The conformal transformation is accomplished by defining a new metric 

where mpI,o c mpl(!,,) is the present value of the Planck mass. When ex- 

pressed in terms of this metric and the corresponding Ricci scalar ‘7% the 

action of Eq. (6) becomes (after an integration by parts) 

3 = d”& 2!& 
J i 

+ (,+ ;) z&,Qaq 

- %“(a) + $cm*cter 1 (13) 
where indices are raised and lowered with the new metric and, because of 

the metric factors which it contains, L?,,,~~~~, has further Q-dependence not 

displayed explicitly. If rewritten in terms of the field 1 = In Q. this would be 

the usual dilaton action. 

Since the gravitational pars or IIW a,ctioll has the usual form. the energy 

momentum-tensor of the Q field can be immediateI>, read off. For a spatially 

homogeneous Q field. the energy density and pressure are 

(13) 

Furthermore. the time and scale factor for the transformed metric are related 

to those for the original metric by di/dt = dw and k. = dm R. 



so the Hubble parameter for.*he transformed metric is 

(16) 

We now recognize Eq. (8) as the Friedmann equation, in standard form. in 

the new frame. Moreover, I? is, up to to a positive numerical factor, equal to 

-dln(T/mpt)/dt. If d(T/mpl)/dt is to change sign, the expansion rate in the 

conformal frame must vanish and change sign-R must undergo a bounce. 

In retrospect. it is actually quite natural that superluminai expansion 

should be followed by entropy production. Recall that the energy density 

of a fluid with equation of state p = yp evolves as p LX Re3f’+-J and that if 

it dominates the energy density of the Universe the scale factor evolves as 

t2/3(‘+7). Superluminal expansion requires that the effective equation of state 

have 7 < -l/3, which implies that p decreases more slowly than R-‘. During 

the superluminal phase, the energy density of the “fluid” that drives inflation 

increases as R2 (or faster) relative to the radiation energy density and as R 

(or faster) relative to the matter density. Since we can be confident that the 

latter phases of the evolution of the Universe involve a radiation-dominated 

phase (from a temperature at least as high as 10 MeV until a temperature of 

about IOeV) and a matter-dominated phase (from a temperature of about 

10eV until the present or close to it), this fluid must eventually “decay” into 

radiation, thereby increasing the entropy by a very large amount. 

Finally, suppose for a moment that it were somehow possible for T/me, 

to increase as required to make an adiabatic solution viable. We would 

argue that the flatness problem is still not solved in a truly satisfactory way. 

The flatness problem involves the size of the curvature radius relative to the 

Hubble radius at the initial epoch: In the standard cosmology, the apparently 

8 



“natural” injtial condition that R,,, (ti) = R(t,)lkl-“z he comparable to the 

Hubble radius H;’ leads to a Universe that quickly recollapses for k > 0. or 

goes into free expansion. R(t) c~ t for k < O+ neither of which is consistent 

with our Universe. The survival of the Universe to ate least the ripe old age of 

10 Gyr before becoming curvature dominated requires the “unnatural” initial 

condition R,,,(t;) 2 (1030T,/npt)NX~1. In a variable-Plan&mass model the 

curvature radius is initially (i.e.. at tr) comparable to the Hubble radius; 

however, the price of achieving this is an initial temperature that is thirty 

orders of magnitude smaller than the initial value of the Plan& mass. i.e. 

TI - 10-30mpt(t,). Thus. an unnatural initial choice of curvature radius 

has simply been traded for an unnatural choice of initial temperature. In 

fact. had we chosen the initia,l epoch for standard cosmoiog~~ by this criteria. 

r, - IO-%pt, there would be no horizon/flatness problenr since the initial 

epoch would essentially be today. 

In sum. we have shown that the sea~rch for a dynamical resolution of the 

horizon and flatness problems associated with the standard cosmology natu- 

rally leads to both superluminal expansion and ma,ssive entropy production, 

the two generic features of inflation. This precludes adiabatic solutions that 

attempt to solve the horizon/flatness by a large vwiation in the Planck mass 

[12]. Further, subject to our minimal assumptions. it implies that inflation 

is the unique dynamical solution to horizon and flatness problems. 
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